Analysis of System Overhead on Parallel Computers

Roberto Gioiosa

Fabrizio Petrini

Kei Davis

Fabien Lebaillif-Delamare
Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS) Division
Los Alamos National Laboratory, NM 87545, USA
{gioiosa,fabrizio,kei,fabien}@lanl.gov

Abstract

Ever-increasing demand for computing capability is
driving the construction of ever-larger computer clus-
ters, typically comprising commodity compute nodes,
ranging in size up to thousands of processors, with
each node hosting an instance of the operating system
(0S). Recent studies [[1} 4] have shown that even min-
imal intrusion by the OS on user applications, e.g. a
slowdown of user processes of less than 1.0% on each
OS instance, can result in a dramatic performance
degradation—50% or more—when the user applica-
tions are executed on thousands of processors.

The contribution of this paper is the explication,
and demonstration by way of a case study, of a
methodology for analyzing and evaluating the im-
pact of the system (all software and hardware other
than user applications) activity on application per-
formance. Our methodology has three major com-
ponents: 1) a set of simple benchmarks to quickly
measure and identify the impact of intrusive system
events; 2) a kernel-level profiling tool Oprofile to char-
acterize all relevant events and their sources; and, 3) a
kernel module that provides timing information for in-
depth modeling of the frequency and duration of each
relevant event and determines which sources have the
greatest impact on performance (and are therefore the
most important to eliminate).

The paper provides a collection of experimental
results conducted on a state-of-the-art dual AMD
Opteron cluster running GNU/Linux 2.6.5. While our
work has been performed on this specific OS, we ar-
gue that our contribution readily generalizes to other
open source and commercial operating systems.

Keywords: Parallel Computing, Operating System
Noise, Linux, Performance Evaluation, Clusters of
Workstations.

1 Introduction

The largest parallel computers based on cluster ar-
chitectures currently deliver tens of teraflops; one
petaflop performance is expected within the decade.

Some of these clusters have thousands of processors,
such as Livermore’s Thunder, Sandia’s Cplant, Virginia
Tech’s Terascale Cluster, and ASCI’s Lightning. Such
machines are very expensive and are intended to solve
as large instances as possible of various scientific ap-
plications. Much effort is expended to optimize the
applications that run on these machines; as the ap-
plications improve and the machines get larger the
impact of the system behavior on application perfor-
mance begins to exceed that of sub-optimalities in the
application. In other words, with increasing scale the
system is (unnecessarily) becoming the primary bot-
tleneck. The source of application performance degra-
dation is system noise—minimal interruptions of ap-
plication execution by such activities as hardware in-
terrupts. Our goal is to show how this impact may
be characterized and quantified, and ultimately elimi-
nated or ameliorated.

1.1 Impact of System Noise at Scale

As will be shown, for a typical one- or two-processor
compute node noise events typically result in an in-
significant 1-2% slowdown in application execution
speed. To see why this is greatly magnified as the
number of processors increases requires only the un-
derstanding of a very simplistic model of the behav-
ior of common parallel applications. In this model
a large data structure is equally distributed over the
processors of a cluster, with each processor perform-
ing essentially the same computations on its portion
of the data. At regular intervals the processors per-
form a global synchronization/communication (to ex-
change data at the boundaries of their portions of the
global data structure, for example). Thus the rate of
overall progress is limited by the processor slowest to
complete its computational phase. When the compu-
tational load is well balanced across processors, sys-
tem noise will be the dominant cause of variation in
computation rates.

Noise events vary in duration. As the number
of processors grows the probability that during each
computational phase at least one processor will expe-

http://www.c3.lanl.gov/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
mailto:gioiosa@lanl.gov
mailto:fabrizio@lanl.gov
mailto:kei@lanl.gov
mailto:fabien@lanl.gov

rience the longest noise event approaches one. The
longest noise event, though relatively rare, may ex-
ceed the nominal length of the computational phase,
resulting in greater than 50% performance loss. Here
communication times are assumed to be a small
fraction of computation times, which is often the
case with modern interconnection networks such as
Quadrics [3]] or Infiniband [2]]. Figure [1| shows this
graphically: time advances to the right, shaded hor-
izontal boxes represent computation on each node,
solid horizontal boxes represent long-duration noise
events, and solid vertical boxes represent the commu-
nication phases.

Figure 1: Noise effect

To see how this effect worsens with the number
of processors, consider an ideal context with a net-
work with zero latency and a computation in which
communication is only synchronization. The com-
putation comprises n processes running on n proces-
sors; the processors experience a ~190us delay ev-
ery 30ms asynchronously (these are real-world figures
drawn from an example given later). Figure |2| shows
the effect as a function of the number of processors
for 100us and 1ms computational phases, where la-
tency refers to the delay imposed on each computa-
tion/communication cycle. (Many of our applications
1ms computational phases, so this is a realistic value;
using 100us makes problems easier to detect.) The
average process latency converges to the maximum
delay observed by a single process, such that the ap-
plication with 100us computation phase will have ap-
proximately one-third the expected performance, the
one with 1ms computation phase approximately 80%
expected performance.

200

100us .
180 ’7
pd
160 [|
140 - 7
g 120 |
=
& 100 | |
7]
& sof |
60 //// |
40 + B |
20 - |
e : y L L L
2 a4 8 16 32 64 128 256 512 1024

Processors

Figure 2: Latency

2 Noise Analysis

System noise is characterized and quantified in three
steps:

1. Examinination of microbenchmark behavior;
2. Profiling of the kernel,
3. Quantification of kernel noise.

To measure noise on a single node we use a mi-
crobenchmark MicroB. With this benchmark each
node’s processor executes N iterations of a computa-
tion carefully calibrated to run for exactly G us in ab-
sence of noise. If the node is not free of noise some
iteration of MicroB will need more than G us to com-
plete. Table [1| shows the results of running MicroB
on one node of our experimental system, a dual AMD
Opteron running standard Linux 2.6. Figure [3|shows

G Ideal Time | Exper. Time | Slowdown
100us 10 sec 10.16 sec 1.6%
1000us 100 sec 101.55 sec 1.55%

Table 1: MicroB Slowdown

MicroB time distributions for 1000ms on each node’s
processor. Figure shows that MicroB experiences
delays of about 0.5-1.5us, some for about 8-12us, and
some for about 190us. Figure [3(b)]is similar but there
are no 8-12us delays. Thus there are noise events that
occurr only on GPUO; we investigate this first.

Looking the /proc/interrupts proc filesystem we
find a strange I/0 APIC behavior:

CPUO CPU1

0: 99543 0 I0O-APIC-edge timer
2: 0 0 XT-PIC cascade
4: 287 0 I0-APIC-edge serial
8: 0 0 I0-APIC-edge rtc
9: 0 0 I0-APIC-level acpi
15: 2 0 I0-APIC-edge idel
28: 16971 0 I0-APIC-level ethl
29: 44 0 I0-APIC-level iocO
30: 5954 0 I0-APIC-level iocl

NMI: 26 4

LOC: 97941 98556

ERR: 0

MIS: 0

This is a well-known “I/O APIC annoyance” that af-
fects some APIC chips: the I/0O APIC sends interrupts
only to ¢cpuUO. This interrupt controller problem causes
unbalanced noise on multi-processor systems.

2.1 Kernel Profiling

The first step in quantifing kernel noise is to under-
stand which and how frequently interrupting func-
tions are called. This may be accomplished using the

100000

"sagel000-0O.dat™

10000 +

1000

Events

100 -

10

1
1000 1050 0O 50 1200 1250 1300 1350 1400

Time

(@) CPUO

100000

"sagelO00-1.dat™

10000

1000

Events

100

10

1000 1050 OO 50

[

1200 1250 1300 1350 1400

Figure 3: MicroB G = 1 ms

kernel profiler OProfile, which is embedded in Linux
2.6, and is capable of profiling all running code with
low overhead. Table [2| shows the output of OProfile
after MicroB ran for 10 seconds.

The OProfile output shows that the timer interrupt
handler is one of the most frequently called functions.
The timer interrupt has a frequency of 1000Hz (so one
interrupt every 1 millisecond). On SMP systems there
is also a local timer for each cpu; it has the same fre-
quency of the global timer (PIT, Programmable Inter-
rupt Timer) but it is time shifted.

Every millisecond each CPU receives one interrupt
from its local timer and may receive one interrupt
from the global timer with a probability of 50%. Tak-
ing kernel profiling information and MicroB informa-
tion together we hypothesize that the timer interrupts
and/or the local timer interrupts are responsible for
the most frequent noise events—those with delays
of about 0.5-1.5us or 8-12us, because the most fre-
quently called functions are timer_interrupt() and
smp_local_timer_interrupt().

2.2 Noise Measurement

The second step is to monitor sources of noise that are
identified by the kernel profiling and MicroB tests. We
made a kernel modification to get the results shown in
Table [3| for interrupts generated by external sources,
and in Table[4|for interrupts generated by local timers.
This patch includes a proc filesystem interface that
can be read to give information about when and how
many events occurred.

The timer interrupt is most frequent source and
its average delay is about 8-12us: this matches the
noise observed in MicroB tests on cpPuO. Moreover,
the PIT raises interrupts only on cPUO because of the
1/0 APIC, so we have conclusively found the first noise
source: the global timer interrupt.

Table [4] shows another source of noise: it has the
same frequency of the PIT but introduces a delay of
about 0.5-1.5 us. This noise is present on both cPUs.
As illustrated in Table [4} this was caused by the local
timer embedded on the ¢PU chip: it is the second main

Time
(b) CPU 1
IRQ N Avg Max Min | CPU
0 | 10162 | 12.237 | 16.093 | 8.705 0
28 118 | 0.751 | 25.214 | 0.342 0

Table 3: IRQ noise during MicroB execution

source of noise in our system. The third most active
source of noise is the network interface card (NIC):
this network traffic was generated by NFS access.

CPU N Avg Max Min
0 | 10160 | 0.576 | 1.260 | 0.379
1 | 10161 | 0.573 | 1.205 | 0.300

Table 4: Local timer noise during MicroB execution

Some interrupt handlers activate tasklets, softIRQs,
or workqueues; it is necessary to examine all of these
events. Previous results have shown that only few
types of interrupts constitute 95% of system noise for
a wide variety of UNIX/Linux-based systems. These
are the global timer interrupts, local timer interrupts,
and network-related interrupts.

Examination of kernel code revealed that

* The main purpose of timer interrupt handler is
to check software timer expiration and to update
some variables used for time measurement. No
softIRQs are activated.

* The main purpose of local timer interrupt han-
dlers is to check for expiration of time quanta
allocated for process execution on its CPU, and
to update some local statistics variables. The lo-
cal timer interrupt handler activates softIRQs: the
timer_softirq.

* The network interrupt handler copies some im-
portant information from the NIC to a buffer and
then activates a tasklet (there is one tasklet for
packets sending and another one for packets re-
ceiving).

CPU: Hammer, speed 1991.2 MHz (estimated)

Counted CPU_CLK_UNHALTED events with a unit mask of 0x00 (No unit mask) count 100000

samples 7% image name app name symbol name

1704 34.8253 vmlinux microb timer_interrupt

1120 22.8898 vmlinux vmlinux timer_interrupt

451 9.2172 vmlinux vmlinux default_idle

61 1.2467 vmlinux microb update_process_times

47 0.9606 vmlinux microb apic_timer_interrupt

33 0.6744 vmlinux microb scheduler_tick

21 0.4292 vmlinux microb smp_local_timer_interrupt
15 0.3066 vmlinux microb do_softirq

Table 2: OProfile output

Table |5 shows results for this analysis. The local
timer softIRQ is not very expensive and, in general,
it is executed immediately after the local timer inter-
rupt handler. Network send and receive tasklets are
normally quick, but can require more time (> 20us) to
send or receive packets, and so need to be controlled.

Softirq | CPU N Avg Max Min
LTimer | 0/1 | 20321 | 0.123 | 4.758 | 0.032
NET TX 0 7 | 0.012 2.138 | 0.008
NET RX 0 118 | 0.426 | 21.521 | 0.218
ksoftirq | 0/1 0 0 0 0

Table 5: Softirq noise during MicroB execution

There remains unidentified noise that occurs every
30ms and introduces a delay of about 180-190us, for
which there seems to be no corresponding kernel ac-
tivities. Other architectures running the same OS do
not exhibit this behavior. It is not possible that this
noise is due to an interrupt because of it is present on
both cpus and we have a system with I/0O APIC an-
noyance. We hypothesize that it is caused by by some
Hardware feature, likely by some cpu feature. For ex-
ample, the AMD Opterons have a circuit that reduces
processor frequency (by skipping some internal clock
cycle) if the temperature of the CPU is too high (Intel
P4 have a similar feature). We guess that during Mi-
croB execution this feature is somehow enabled. Af-
ter some experiments we found that the BIOS was re-
sponsible for enabling thermal features on processors.
After a BIOS upgrade we have a new MicroB behavior
without these noise events.

3 Conclusion

We have shown that in modern supercomputers a sig-
nificant bottleneck is imposed by the system: tradi-
tional performance analysis and profiling tools fail to
characterize this problem. Our methodology allows us
to clearly identify system noise, quantify the total im-
pact on an application, identify the primary sources,

and then eliminate them. The main contribution of
is the provision and demonstration of a methodology
that is effective for identifying and quantify noise on
a system.

References

[1] Erik Hendriks. BProc: The Beowulf Dis-
tributed Process Space. In Proceedings of
the 16th Annual ACM International Confer-
ence on Supercomputing (ICS’02), New York,
New York, June 22-26, 2002. Available from
http://www.acl.lanl.gov/cluster/papers/
hendriks-ics02/hendriks-ics02.pdf,

[2] Infiniband Trade Association. Infiniband Speci-
fication 1.0a, June 2001. Available from http:

//www.infinibandta.org,

[3] Fabrizio Petrini, Adolfy Hoisie, Wu chun Feng,
and Richard Graham. Performance Evaluation of
the Quadrics Interconnection Network. In Work-
shop on Communication Architecture for Clusters

(CAC ’01), San Francisco, CA, April 2001.
[4]

Fabrizio Petrini, Darren Kerbyson, and Scott
Pakin. The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on
the 8,192 Processors of ASCI Q. In Proceedings
of SC2003, Phoenix, Arizona, November 10-16,
2003. Available from http://www.c3.lanl.gov/

“fabrizio/papers/sc03_noise.pdf.

http://www.acl.lanl.gov/cluster/papers/hendriks-ics02/hendriks-ics02.pdf
http://www.acl.lanl.gov/cluster/papers/hendriks-ics02/hendriks-ics02.pdf
http://www.infinibandta.org
http://www.infinibandta.org
http://www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf
http://www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf

	Introduction
	Impact of System Noise at Scale

	Noise Analysis
	Kernel Profiling
	Noise Measurement

	Conclusion
	References

